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State of the World 

• Clock rate ride over; power a constraint 

• New architectures considered 

GPGPU – even though hard to program 
effectively 

• Quick look at the state of the world 

Clouds  

GPGPU Clusters 

“Conventional” parallel supercomputer 
• Note that the last is “sort of” general purpose, 

while the others are more narrowly focused 
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Clouds 

• Clouds seem to be everywhere 

Service oriented 

Demand-driven pricing 

Economy of scale 

• For one view of what a cloud is and isn’t, see 

“A View of Cloud Computing,” Armbrust et al, 
Communications of the ACM Vol. 53 No. 4, 
Pages 50-58 

• Includes 10 outstanding issues, including both 

performance and data transfer key to HPC use 

None impossible, but 

• HPC often needs excellent networking 

• HPC often needs large scale I/O (and large is many TB) 
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GPGPU Equipped Clusters 

• High compute density, good power 
efficiency 

• But 

Low level programming models 

Complex performance models 

• Still promising 

RoadRunner at Los Alamos 

Many GPU-enhanced clusters 

May be in our future… 
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NSF’s Strategy for High-end 
Computing 

FY’07 FY’11 FY’10 FY’09 FY’08 
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Track 1 System 

Track 2 Systems  

Track 3 Systems 
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Diverse Large Scale Computational 
Science  
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Focus on Sustained 
Performance 
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Blue Waters Computing System 

*  Reference petascale computing system (no accelerators). 

Typical 
Cluster 

(NCSA Abe) 

Dell 

Intel Xeon 

0.090 

~0.005 

9,600 

0.0144 

0.1 

5 

40 

Track 2 

(TACC) 

Sun 

AMD 

0.58 

~0.06 

62,976 

0.12 

1.73  

2.5 
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Blue 
Waters* 

IBM 

Power 7 

~1.0 

>300,000 

>1.0 

>18 

~500 

100-400 

System Attribute 

Vendor 

Processor 

Peak Perf. (PF) 

Sustained Perf. (PF) 

Number of cores 

Amount of Memory (PB) 

Amount of Disk Storage (PB) 

Amount of Archival Storage (PB) 

External Bandwidth (Gbps) 
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Building Blue Waters 

Multi-chip Module 
4 Power7 chips (SMP) 
128 GB memory 
512 GB/s memory 
bandwidth 
~1 TF (peak) 

Router 
1,128 GB/s bandwidth 
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Power7 Chip:  
Computational Heart of Blue Waters 

• Base Technology 

45 nm, 576 mm2 

1.2 B transistors 

• Chip 

8 cores 

12 execution units/core 

1, 2, 4 way SMT/core 

Up to 4 FMAs/cycle 

Caches 

• 32 KB I, D-cache, 256 KB L2/core 

• 32 MB L3 (private/shared) 

Dual DDR3 memory controllers 

• 128 GB/s peak memory bandwidth  
(1/2 byte/flop) 

Clock range of 3.5 – 4 GHz 
Quad-chip MCM 

Power7 
Chip 



11 

Memory Solutions 

1) Dual Integrated DDR3 Controllers

- Massive 16KB scheduling window

per POWER7 chip insures high

channel and DIMM utilization

- Sparse access acceleration

- Advanced Energy Management

- Numerous RAS advances

POWER7 Chip

Memory

Controller

Memory

Controller

Advanced

Buffer

Chip

2) Eight high speed 6.4 GHz channels

- New low power differential signaling

- Sustained 100+ GB/s per socket

3) New DDR3 buffer chip architecture

- Larger capacity support (32 GB / core)

- Energy Management support

- RAS enablement

4) DDR3 DRAMs

- Supports 800, 1066, 1333, and 1600
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Cache Structure Innovation 

• Combines dense, low power attributes of eDRAM with the speed and bandwidth advantages of SRAM 
– all on the same chip 

• Provides low latency L1 and L2 dedicated per core 

~3x lower latency than L3 Local region 

Keeps a 256KB working set 

Reduced L3 power requirements and improves throughput 

• Provides large, shared L3 

~3x lower latency than memory 

Automatically migrates per core private working set footprints (up to 4MB) to fast local region 

per code at ~5x lower latency than the full L3 cache 

Automatically clones shared data to multiple per core private regions 

Enables a subset of cores to utilize the entire, large shared L3 Cache when remaining cores are 

not using it. 

Cache 

Level 

Capacit

y 

Array Policy Comment 

L1 Data 32 KB Fast SRAM Store -

thru 

Local thread storage update  

Private L2 256KB Fast SRAM Store-In De-coupled global storage update 

Fast L3 

“Private” 

Up to 4 

MB 

eDRAM Partial 

Victim 

Reduced power footprint (up to 4 

MB) 

Shared 

L3 

32MB eDRAM Adaptive Large 32MB shared footprint 

Core

L2 Cache

Core

L2 Cache

Core

L2 Cache

Core

L2 Cache

Core

L2 Cache

Core

L2 Cache

Core

L2 Cache

Core

L2 Cache

Mem Ctrl Mem CtrlL3 Cache and Chip Interconnect
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1.1 TB/s HUB 

• 192 GB/s Host Connection 

• 336 GB/s to 7 other local 
nodes in the same drawer 

• 240 GB/s to local-remote 
nodes in the same 
supernode (4 drawers) 

• 320 GB/s to remote nodes 

• 40 GB/s to general purpose 
I/O  
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First Level 
Interconnect 

L-Local 
HUB to HUB Copper Wiring 
256 Cores 

ONE DRAWER 

8 MCMs, 32 chips, 256 cores  
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Second Level Interconnect 
Optical ‘L-Remote’ Links from HUB 
Construct Super Node (4 CECs) 

1,024 Cores 
Super Node 

ONE SUPERNODE 

4 drawers, 32 MCMs, 128 chips, 1024 

cores  
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BPA 
200 to 480Vac  

370 to 575Vdc 
Redundant Power 

Direct Site Power 
Feed 
PDU Elimination 

WCU 
Facility Water 

Input 
100% Heat to 

Water 
Redundant 

Cooling 

CRAH Eliminated 

Storage Unit 
4U 

0-6 / Rack 
Up To 384 SFF DASD / 

Unit 
File System  

CECs 
2U 

1-12 CECs/Rack 
256 Cores 

128 SN DIMM Slots / CEC 
8,16, (32) GB DIMMs 
17 PCI-e Slots 

Imbedded Switch 
Redundant DCA 
NW Fabric 

Up to:3072 cores, 24.6TB  

(49.2TB) 

Rack 
990.6w x 1828.8d x 

2108.2 
39”w x 72”d x 83”h 
~2948kg (~6500lbs) 

Data Center In a Rack 
Compute 

Storage 
Switch 

100% Cooling 
PDU Eliminated 

Input: 8 Water Lines, 4 Power 
Cords 

Out: ~100TFLOPs / 24.6TB / 
153.5TB 

        192 PCI-e 16x / 12 PCI-e 8x 
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National Petascale Computing Facility  
at a Glance 

• 88,000 GSF over two stories—45’ tall 

30,000+ GSF of raised floor 

20,000+ unobstructed net for computers 

6’ clearance of raised floor  

• 24 MW initial power feeds + backup 

Three 8 MW feeds + One 8 MW for 
backup 

13,800 volt power to the each 

• 5,400 Tons of cooling 

Full water side economization for 50%+ 
of the year  

Automatic Mixing of mechanical and 
ambient chilled water for optimal 
efficiency 

Adjacent to (new) 6.5M gallon thermal 
storage tank 

• 480 Volt distribution to computers 

• Energy Efficiency 

PUE - ~1.02 to <1.2 (projected) 

USGBC LEED Silver Gold (Platinum?) 
classification target 

www.ncsa.illinois.edu/

BlueWaters 

Partners 

 EYP MCF/ 
 Gensler 
 IBM 
 Yahoo! 
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Data Capability 

• >18PB of disk 

• Peak IO performance  
in excess of 1.5TB/s. 

• Note over 1PB of  
memory 

Can load 100 TB database in a few minutes 

Entire DB fits in memory (for even a more 

modest sized system) 

Excellent system for data analysis, not just 

FLOPS 
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Status 

• Building is ready (NPCF) 

• POWER7 systems becoming available 
Currently testing on simulators as well as hardware 

• Programming models include UPC as well as 

MPI; all are interoperable through local data 

• NSF providing allocations through PRAC 
process 

Applications are already tuning for BW 

Third round closed last March 

Next round closes March 17, 2011 

• Blue Waters will begin running applications in 

2011 
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Where can we get with a 
Homogeneous Cluster? 

• What’s commodity about Blue Waters? 

Power7, SMP nodes 

I/O (but rare to have this much capability in an HPC 
system) 

• What’s not commodity? 

Network (though it could/should be) 

• What are the limits? 
Power consumption in 10’s of MW 

• A TGV is about 8MW 

• Water cooling (both to remove heat and do it more efficiently 
than air cooling) 

Exascale will need 100-1000x power efficiency; 
100-1000x space efficiency 

Just how bad is this? 
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Exascale Challenges 

• Exascale will be hard (see the DARPA Report 
[Kogge]) 

Conventional designs plateau at 100 PF (peak 

• all energy is used to move data 

Aggressive design is at 70 MW and is very hard to 
use 

• 600M instruction/cycle - Concurrency 

• 0.0036 Byte moved/flop – All operations local 

• No ECC, no redundancy – Must detect/fix errors 

• No cache memory – Manual management of memory  

• HW failure every 35 minutes – Eeek! 

• Waiting doesn’t help 
At the limits of CMOS technology 
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What can we do? 

• Better use of our existing systems 

Blue Waters will provide a sustained PF, but 
that requires ~10PF peak 

• Improve node performance 

Make the compiler better 

Give better code to the compiler 

Get realistic with algorithms/data structures 

• Improve parallel performance/scalability 

• Improve productivity of applications 

• Improve algorithms 
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Make the Compiler Better 

• It remains the case that most 
compilers cannot compete with 

hand-tuned or autotuned code on 
simple code 

Just look at dense matrix-matrix  
multiplication or matrix transpose 

Try it yourself! 

• Matrix multiply on my laptop: 

• N=100 (in cache): 1818 MF (1.1ms) 

• N=1000 (not): 335 MF (6s) 
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Compilers versus Libraries in 
DFT 

Source: Markus Püschel. Spring 2008.   
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How Do We Change This? 

• Test compiler against “equivalent” code (e.g., best hand-tuned or 
autotuned code that performs the same computation, under some 
interpretation or “same”) 

In a perfect world, the compiler would provide the same, excellent 
performance for all equivalent versions 

• As part of the Blue Waters project, Padua, Garzaran, Maleki are 
developing a test suite that evaluates how the compiler does with 
such equivalent code 

Working with vendors to improve the compiler 

Identify necessary transformations 

Identify opportunities for better interaction with the programmer to 
facilitate manual intervention. 

Main focus has been on code generation for vector extensions 

Result is a compiler whose realized performance is less sensitive to different 

expression of code and therefore closer to that of the best hand-tuned 
code. 

Just by improving automatic vectorization, loop speedups of more than 5 
have been observed on the Power 7. 

• But this is a long-term project 

What can we do in the meantime? 
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Give “Better” Code to the 
Compiler 

• Augmenting current programming 
models and languages to exploit 
advanced techniques for 
performance optimization (i.e., 
autotuning) 

• Not a new idea, and some tools 
already do this.   

• But how can these approaches 
become part of the mainstream 
development? 
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How Can Autotuning Tools Fit 
Into Application Development? 

• In the short run, just need effective 
mechanisms to replace user code with 
tuned code 

Manual extraction of code, specification of 
specific collections of code transformations 

• But this produces at least two versions 
of the code (tuned (for a particular 
architecture and problem choice) and 
untuned).  And there are other issues. 

• What does an application want (what is 

the Dream)? 



29 

Application Needs Include 

• Code must be portable 

• Code must be persistent 

• Code must permit (and encourage) 
experimentation 

• Code must be maintainable 

• Code must be correct 

• Code must be faster 
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Implications of These 
Requirements 

• Portable - augment existing language.  Either use pragmas/
comments or extremely portable precompiler 

Best if the tool that performs all of these steps looks like just like 
the compiler, for integration with build process 

• Persistent 
Keep original and transformed code around 

• Maintainable 
Let use work with original code and ensure changes automatically 
update tuned code 

• Correct 
Do whatever the app developer needs to believe that the tuned 
code is correct 

• In the end, this will require running some comparison tests 

• Faster 
Must be able to interchange tuning tools - pick the best tool for 
each part of the code 

No captive interfaces 

Extensibility - a clean way to add new tools, transformations, 
properties, … 
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Application-Relevant 
Abstractions 

• Language for interfacing with autotuning must 
convey concepts that are meaningful to the 
application programmer 

• Wrong: unroll by 5 

Though could be ok for performance expert, and 
some compilers already provide pragmas for specific 
transformations 

• Right (maybe): Performance precious, typical 
loop count between 100 and 10000, even, not 
power of 2 

• We need work at developing higher-level, 
performance-oriented languages or language 
extensions 
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Better Algorithms and Data 
Structures 

• Autotuning only offers the best 
performance with the given data 
structure and algorithm 

That’s a big constraint 

• Processors include hardware to address 

performance challenges 

“Vector” function units 

Memory latency hiding/prefetch 

Atomic update features for shared memory 

Etc.  
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Prefetch Engine on IBM 
Power Microprocessors 

• Beginning with the Power 3 chip, 
IBM provided a hardware 
component called a prefetch 
engine to monitor cache misses,  
guess the data pattern (“data 
stream”) and prefetch data in 
anticipation of their use.  

• Power 4, 5 and 6 processors 
enhanced this functionality. 

The Prefetch Engine on Power3 

 

Data Stream and Cache Information 
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 Inefficiency of CSR and 
BCSR formats 

• The traditional CSR and Blocked CSR are hard 
to reorganize for data streams (esp > 2 
streams) to enable prefetch, since the number 
of non-zero elements or blocks for every row 
may be different.  

• Blocked CSR (BCSR) format can improve 

performance for some sparse matrices that are 
locally dense, even if a few zeros are added to 
the matrix.  

If the matrix is too sparse (or structure requires too 
many added zeros), BCSR can hurt performance 
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Streamed Compressed 
Sparse Row (S-CSR) format 

• S-CSR format partitions the sparse matrix into blocks along rows with size of 
bs. Zeros are added in to keep the number of elements the same in each row 
of a block. The column indices for ZEROs in each row are set to the index of 

the last non-zero element in the row. The first rows of all blocks are stored 
first, then second, third … and bs-th rows.  

• For the sample matrix in the following Figure, NNZ =  29. Using a block size 
of bs = 4, it generates four equal length streams R, G, B and P.  This new 
design only adds 7 zeros every 4 rows. 
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Streamed Blocked Compressed Sparse 
Row (S-BCSR) format 

• When the matrix is locally dense and can be blocked efficiently with a few 
ZEROs added in, we can restore the blocked matrix using the similar idea as 
S-CSR format. The first rows of all blocks are stored first, then second, third 

… and last rows. Using 4x4 block for example, it will generate R, G, B and P 
four equal length streams. We call this the Streamed Blocked Compressed 
Row storage format (S-BCSR).  
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Performance Ratio Compared to 
CSR Format  

• S-CSR format is better than CSR format for all (on Power 5 and 6) or Most ( on Power 4) 
matrices 

• S-BCSR format is better than BCSR format for all (on Power 6) or Most ( on Power 4 and 
5) matrices 

• Blocked format performance from  to 3x CSR. 
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What Does This Mean For 
You? 

• It is time to rethink data structures and 
algorithms to match the realities of memory 
architecture 

We have results for x86 where the benefit is smaller 
but still significant 

Better match of algorithms to prefetch hardware is 
necessary to overcome memory performance 
barriers 

• Similar issues come up with heterogeneous 

processing elements (someone needs to 
design for memory motion and concurrent and 
nonblocking data motion) 
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 Performance on a Node 

• Nodes are SMPs 
You have this problem on anything 
(even laptops) 

• Tuning issues include the usual 
Getting good performance out of the 
compiler (often means adapting to 
the memory hierarchy) 

• New (SMP) issues include 
Sharing the SMP with other processes 

Sharing the memory system 
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New (?) Wrinkle – Avoiding Jitter 

• Jitter here means the variation in 
time measured when running 
identical computations 

Caused by other computations, e.g., an 
OS interrupt to handle a network event 
or runtime library servicing a 
communication or I/O request 

• This problem is in some ways less 
serious on HPC platform, as the OS 
and runtime services are tuned to 
minimize impact 

However, cannot be eliminated entirely 
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Sharing an SMP 

• Having many cores available 
makes everyone think that 
they can use them to solve 
other problems (“no one 
would use all of them all of 
the time”) 

• However, compute-bound 
scientific calculations are 
often written as if all compute 
resources are owned by the 
application 

• Such static scheduling leads 
to performance loss 

• Pure dynamic scheduling adds 
overhead, but is better 

• Careful mixed strategies are 
even better 

• Thanks to Vivek Kale 
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Expressing Parallelism 

• Programming Model Libraries 
OpenMP; threads 
MPI (MPI-1, MPI-2, MPI-3) 

(Open)SHMEM, GA 

• Parallel Programming Languages 
UPC, CAF in Fortran 2008 

HPCS (Chapel, X10, Fortress) 

• Hybrid Models 
MPI + Threads 

• Libraries/Frameworks 
Math libraries 

I/O libraries 
Parallel programming frameworks (e.g., Charm++) 
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The PGAS Languages 

• PGAS (Partitioned Global Address 
Space) languages attempt to 

combine the convenience of the 
global view of data with awareness 

of data locality, for performance 

Co-Array Fortran (CAF), an extension 
to Fortran 90 

UPC (Unified Parallel C), an extension 
to C 
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Co-Array Fortran (CAF) 

• SPMD – Single program, multiple data 

Replicated to a number of images 

Images have indices 1,2, … 

Number of images fixed during execution 

Each image has its own set of local variables 

Images execute asynchronously except when explicitly 
synchronized 

• Variables declared as co-arrays are accessible by 
another image through a set of array subscripts, 
delimited by [ ] and mapped to image indices by the 
usual rule 

• Multiple versions of CAF 

Classic CAF 

CAF in Fortran 2008 

• Like Classic, but: No collectives; no teams. 
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UPC 

• UPC is an extension of C (not C++) with 
shared and local addresses 

• Shared keyword in type declarations 

• UPC defines parallelism in terms of 
“threads” (may be implemented as OS 
threads) 

• Extensions include collectives and 
nonblocking transfers 

• Several implementations exist 
including xlupc from IBM 
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Newer Languages 

• HPCS Languages 

Chapel, X10, Fortress 

Retains locality (but in a general form) 

Adds concurrency creation 

More general distributed data structures 

More general synchronization methods 

• Research implementations – not ready 

for applications 
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Hybrid Programming Models 

• No one programming model is best for all parts of most 

applications 

• Combining programming models provides a powerful set of 
tools 

Can give very good results 

But relies on a clean and efficient interface between 
programming models – this is often missing 

• On Blue Waters, MPI, UPC, CAF, and others will be 
interoperable 

Can build library routines/components in most appropriate 
model 

Link application together 

Work still needs to be done to understand how best to 
coordinate the models 

• On BW, all models make use of a single lower level, 
simplifying that coordination.  However, threads and internode 
support not unified 
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Getting Past MPI 

• Incremental – various hybrid models 

Single thread language (C/C++Fortran) 

MPI – general Data structures; low level locality control 

Thread/OpenMP – low-level shared memory; concurrency 
creation 

PGAS – support for distributed data structures; compiled 
communication 

• Revolution 

Is it C/Fortran/C++ with extensions (e.g., next generation 
PGAS)? 

Must offer radical new capabilities 

• Concurrency creation 

• Latency hiding 

• Data motion minimization 

But without sacrificing generality 
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Scalability – A Matter of 
Degree 

• Concurrency 
Need > 300k concurrent threads 
Need > 10K more loosely coupled tasks 
• Typical latencies: 1-10ns to Cache; 100-1000ns 

to Memory; 1000-10000ns to remote memory 

• Latency tolerance and communication 
overlap 

Systems are hundreds to thousands of clock 
cycles across 

• Load Balance 
Any imbalance, from whatever cause, can 
cause everyone to wait 
Synchronous (barrier) algorithms likely to 
scale poorly 
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Example of Load (Im)balance 
and Scaling 

• Simple regular grid 
sweep 

• Work per node should be 
the same (each node is a 
16-way SMP); weak 
scaling 

• All 16 cores used (typical 
for real life) 

• Local imbalances within 
node create scalability 
problem 

• Note that load imbalance 
will appear to slower MPI 
communication 
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What’s Different at Petascale 

• Performance Focus 
Only a little – basically, the resource is expensive, so a 
premium placed on making good use of resource 
Quite a bit – node is more complex, has more features 
that must be exploited 

• Scalability 
Solutions that work at 100-1000 way often inefficient at 
100,000-way 
Some algorithms scale well 

• Explicit time marching in 3D 

Some don’t 
• Direct implicit methods 

Some scale well for a while  
• FFTs (communication volume in Alltoall) 

Load balance, latency are critical issues 

• Fault Tolerance becoming important 
Now: reduce time spent in checkpoints 

Soon: Lightweight recovery from transient errors 
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A Cluster Agenda 

• Better use of existing resources 

Performance-oriented programming 

Dynamic management of resources at all levels 

Embrace hybrid programming models (you have 
already) 

• Focus on results 

Network bandwidth (and latency) 

I/O capability 

• Prepare for the future 

Fault tolerance 

Latency Tolerant Algorithms  

Data-driven systems 


