
Enabling the Next Generation
of Scalable Clusters

William Gropp
www.cs.illinois.edu/~wgropp

2

State of the World

• Clock rate ride over; power a constraint

• New architectures considered

GPGPU – even though hard to program
effectively

• Quick look at the state of the world

Clouds

GPGPU Clusters

“Conventional” parallel supercomputer
• Note that the last is “sort of” general purpose,

while the others are more narrowly focused

3

Clouds

• Clouds seem to be everywhere

Service oriented

Demand-driven pricing

Economy of scale

• For one view of what a cloud is and isn’t, see

“A View of Cloud Computing,” Armbrust et al,
Communications of the ACM Vol. 53 No. 4,
Pages 50-58

• Includes 10 outstanding issues, including both

performance and data transfer key to HPC use

None impossible, but

• HPC often needs excellent networking

• HPC often needs large scale I/O (and large is many TB)

4

GPGPU Equipped Clusters

• High compute density, good power
efficiency

• But

Low level programming models

Complex performance models

• Still promising

RoadRunner at Los Alamos

Many GPU-enhanced clusters

May be in our future…

5

NSF’s Strategy for High-end
Computing

FY’07 FY’11 FY’10 FY’09 FY’08

S
ci

en
ce

 a
n

d
 E

n
g
in

ee
ri

n
g
 C

a
p

a
b

il
it

y

(l
o

g
a

ri
th

m
ic

 s
ca

le
)

Track 1 System

Track 2 Systems

Track 3 Systems

6

Diverse Large Scale Computational
Science

7

Focus on Sustained
Performance

8

Blue Waters Computing System

* Reference petascale computing system (no accelerators).

Typical
Cluster

(NCSA Abe)

Dell

Intel Xeon

0.090

~0.005

9,600

0.0144

0.1

5

40

Track 2

(TACC)

Sun

AMD

0.58

~0.06

62,976

0.12

1.73

2.5

10

Blue
Waters*

IBM

Power 7

~1.0

>300,000

>1.0

>18

~500

100-400

System Attribute

Vendor

Processor

Peak Perf. (PF)

Sustained Perf. (PF)

Number of cores

Amount of Memory (PB)

Amount of Disk Storage (PB)

Amount of Archival Storage (PB)

External Bandwidth (Gbps)

9

Building Blue Waters

Multi-chip Module
4 Power7 chips (SMP)
128 GB memory
512 GB/s memory
bandwidth
~1 TF (peak)

Router
1,128 GB/s bandwidth

10

Power7 Chip:
Computational Heart of Blue Waters

• Base Technology

45 nm, 576 mm2

1.2 B transistors

• Chip

8 cores

12 execution units/core

1, 2, 4 way SMT/core

Up to 4 FMAs/cycle

Caches

• 32 KB I, D-cache, 256 KB L2/core

• 32 MB L3 (private/shared)

Dual DDR3 memory controllers

• 128 GB/s peak memory bandwidth
(1/2 byte/flop)

Clock range of 3.5 – 4 GHz
Quad-chip MCM

Power7
Chip

11

Memory Solutions

1) Dual Integrated DDR3 Controllers

- Massive 16KB scheduling window

per POWER7 chip insures high

channel and DIMM utilization

- Sparse access acceleration

- Advanced Energy Management

- Numerous RAS advances

POWER7 Chip

Memory

Controller

Memory

Controller

Advanced

Buffer

Chip

2) Eight high speed 6.4 GHz channels

- New low power differential signaling

- Sustained 100+ GB/s per socket

3) New DDR3 buffer chip architecture

- Larger capacity support (32 GB / core)

- Energy Management support

- RAS enablement

4) DDR3 DRAMs

- Supports 800, 1066, 1333, and 1600

12

Cache Structure Innovation

• Combines dense, low power attributes of eDRAM with the speed and bandwidth advantages of SRAM
– all on the same chip

• Provides low latency L1 and L2 dedicated per core

~3x lower latency than L3 Local region

Keeps a 256KB working set

Reduced L3 power requirements and improves throughput

• Provides large, shared L3

~3x lower latency than memory

Automatically migrates per core private working set footprints (up to 4MB) to fast local region

per code at ~5x lower latency than the full L3 cache

Automatically clones shared data to multiple per core private regions

Enables a subset of cores to utilize the entire, large shared L3 Cache when remaining cores are

not using it.

Cache

Level

Capacit

y

Array Policy Comment

L1 Data 32 KB Fast SRAM Store -

thru

Local thread storage update

Private L2 256KB Fast SRAM Store-In De-coupled global storage update

Fast L3

“Private”

Up to 4

MB

eDRAM Partial

Victim

Reduced power footprint (up to 4

MB)

Shared

L3

32MB eDRAM Adaptive Large 32MB shared footprint

Core

L2 Cache

Core

L2 Cache

Core

L2 Cache

Core

L2 Cache

Core

L2 Cache

Core

L2 Cache

Core

L2 Cache

Core

L2 Cache

Mem Ctrl Mem CtrlL3 Cache and Chip Interconnect

L
o

c
a

l S
M

P
 L

in
k
s

R
e

m
o

te
 S

M
P

 +
 I/O

 L
in

k
s

13

1.1 TB/s HUB

• 192 GB/s Host Connection

• 336 GB/s to 7 other local
nodes in the same drawer

• 240 GB/s to local-remote
nodes in the same
supernode (4 drawers)

• 320 GB/s to remote nodes

• 40 GB/s to general purpose
I/O

14

First Level
Interconnect

L-Local
HUB to HUB Copper Wiring
256 Cores

ONE DRAWER

8 MCMs, 32 chips, 256 cores

15

16

Second Level Interconnect
Optical ‘L-Remote’ Links from HUB
Construct Super Node (4 CECs)

1,024 Cores
Super Node

ONE SUPERNODE

4 drawers, 32 MCMs, 128 chips, 1024

cores

17

BPA
200 to 480Vac

370 to 575Vdc
Redundant Power

Direct Site Power
Feed
PDU Elimination

WCU
Facility Water

Input
100% Heat to

Water
Redundant

Cooling

CRAH Eliminated

Storage Unit
4U

0-6 / Rack
Up To 384 SFF DASD /

Unit
File System

CECs
2U

1-12 CECs/Rack
256 Cores

128 SN DIMM Slots / CEC
8,16, (32) GB DIMMs
17 PCI-e Slots

Imbedded Switch
Redundant DCA
NW Fabric

Up to:3072 cores, 24.6TB

(49.2TB)

Rack
990.6w x 1828.8d x

2108.2
39”w x 72”d x 83”h
~2948kg (~6500lbs)

Data Center In a Rack
Compute

Storage
Switch

100% Cooling
PDU Eliminated

Input: 8 Water Lines, 4 Power
Cords

Out: ~100TFLOPs / 24.6TB /
153.5TB

 192 PCI-e 16x / 12 PCI-e 8x

18

National Petascale Computing Facility
at a Glance

• 88,000 GSF over two stories—45’ tall

30,000+ GSF of raised floor

20,000+ unobstructed net for computers

6’ clearance of raised floor

• 24 MW initial power feeds + backup

Three 8 MW feeds + One 8 MW for
backup

13,800 volt power to the each

• 5,400 Tons of cooling

Full water side economization for 50%+
of the year

Automatic Mixing of mechanical and
ambient chilled water for optimal
efficiency

Adjacent to (new) 6.5M gallon thermal
storage tank

• 480 Volt distribution to computers

• Energy Efficiency

PUE - ~1.02 to <1.2 (projected)

USGBC LEED Silver Gold (Platinum?)
classification target

www.ncsa.illinois.edu/

BlueWaters

Partners

 EYP MCF/
 Gensler
 IBM
 Yahoo!

19

Data Capability

• >18PB of disk

• Peak IO performance
in excess of 1.5TB/s.

• Note over 1PB of
memory

Can load 100 TB database in a few minutes

Entire DB fits in memory (for even a more

modest sized system)

Excellent system for data analysis, not just

FLOPS

20

Status

• Building is ready (NPCF)

• POWER7 systems becoming available
Currently testing on simulators as well as hardware

• Programming models include UPC as well as

MPI; all are interoperable through local data

• NSF providing allocations through PRAC
process

Applications are already tuning for BW

Third round closed last March

Next round closes March 17, 2011

• Blue Waters will begin running applications in

2011

21

Where can we get with a
Homogeneous Cluster?

• What’s commodity about Blue Waters?

Power7, SMP nodes

I/O (but rare to have this much capability in an HPC
system)

• What’s not commodity?

Network (though it could/should be)

• What are the limits?
Power consumption in 10’s of MW

• A TGV is about 8MW

• Water cooling (both to remove heat and do it more efficiently
than air cooling)

Exascale will need 100-1000x power efficiency;
100-1000x space efficiency

Just how bad is this?

22

Exascale Challenges

• Exascale will be hard (see the DARPA Report
[Kogge])

Conventional designs plateau at 100 PF (peak

• all energy is used to move data

Aggressive design is at 70 MW and is very hard to
use

• 600M instruction/cycle - Concurrency

• 0.0036 Byte moved/flop – All operations local

• No ECC, no redundancy – Must detect/fix errors

• No cache memory – Manual management of memory

• HW failure every 35 minutes – Eeek!

• Waiting doesn’t help
At the limits of CMOS technology

23

What can we do?

• Better use of our existing systems

Blue Waters will provide a sustained PF, but
that requires ~10PF peak

• Improve node performance

Make the compiler better

Give better code to the compiler

Get realistic with algorithms/data structures

• Improve parallel performance/scalability

• Improve productivity of applications

• Improve algorithms

24

Make the Compiler Better

• It remains the case that most
compilers cannot compete with

hand-tuned or autotuned code on
simple code

Just look at dense matrix-matrix
multiplication or matrix transpose

Try it yourself!

• Matrix multiply on my laptop:

• N=100 (in cache): 1818 MF (1.1ms)

• N=1000 (not): 335 MF (6s)

25

Compilers versus Libraries in
DFT

Source: Markus Püschel. Spring 2008.

26

How Do We Change This?

• Test compiler against “equivalent” code (e.g., best hand-tuned or
autotuned code that performs the same computation, under some
interpretation or “same”)

In a perfect world, the compiler would provide the same, excellent
performance for all equivalent versions

• As part of the Blue Waters project, Padua, Garzaran, Maleki are
developing a test suite that evaluates how the compiler does with
such equivalent code

Working with vendors to improve the compiler

Identify necessary transformations

Identify opportunities for better interaction with the programmer to
facilitate manual intervention.

Main focus has been on code generation for vector extensions

Result is a compiler whose realized performance is less sensitive to different

expression of code and therefore closer to that of the best hand-tuned
code.

Just by improving automatic vectorization, loop speedups of more than 5
have been observed on the Power 7.

• But this is a long-term project

What can we do in the meantime?

27

Give “Better” Code to the
Compiler

• Augmenting current programming
models and languages to exploit
advanced techniques for
performance optimization (i.e.,
autotuning)

• Not a new idea, and some tools
already do this.

• But how can these approaches
become part of the mainstream
development?

28

How Can Autotuning Tools Fit
Into Application Development?

• In the short run, just need effective
mechanisms to replace user code with
tuned code

Manual extraction of code, specification of
specific collections of code transformations

• But this produces at least two versions
of the code (tuned (for a particular
architecture and problem choice) and
untuned). And there are other issues.

• What does an application want (what is

the Dream)?

29

Application Needs Include

• Code must be portable

• Code must be persistent

• Code must permit (and encourage)
experimentation

• Code must be maintainable

• Code must be correct

• Code must be faster

30

Implications of These
Requirements

• Portable - augment existing language. Either use pragmas/
comments or extremely portable precompiler

Best if the tool that performs all of these steps looks like just like
the compiler, for integration with build process

• Persistent
Keep original and transformed code around

• Maintainable
Let use work with original code and ensure changes automatically
update tuned code

• Correct
Do whatever the app developer needs to believe that the tuned
code is correct

• In the end, this will require running some comparison tests

• Faster
Must be able to interchange tuning tools - pick the best tool for
each part of the code

No captive interfaces

Extensibility - a clean way to add new tools, transformations,
properties, …

31

Application-Relevant
Abstractions

• Language for interfacing with autotuning must
convey concepts that are meaningful to the
application programmer

• Wrong: unroll by 5

Though could be ok for performance expert, and
some compilers already provide pragmas for specific
transformations

• Right (maybe): Performance precious, typical
loop count between 100 and 10000, even, not
power of 2

• We need work at developing higher-level,
performance-oriented languages or language
extensions

32

Better Algorithms and Data
Structures

• Autotuning only offers the best
performance with the given data
structure and algorithm

That’s a big constraint

• Processors include hardware to address

performance challenges

“Vector” function units

Memory latency hiding/prefetch

Atomic update features for shared memory

Etc.

33

Prefetch Engine on IBM
Power Microprocessors

• Beginning with the Power 3 chip,
IBM provided a hardware
component called a prefetch
engine to monitor cache misses,
guess the data pattern (“data
stream”) and prefetch data in
anticipation of their use.

• Power 4, 5 and 6 processors
enhanced this functionality.

The Prefetch Engine on Power3

Data Stream and Cache Information

34

 Inefficiency of CSR and
BCSR formats

• The traditional CSR and Blocked CSR are hard
to reorganize for data streams (esp > 2
streams) to enable prefetch, since the number
of non-zero elements or blocks for every row
may be different.

• Blocked CSR (BCSR) format can improve

performance for some sparse matrices that are
locally dense, even if a few zeros are added to
the matrix.

If the matrix is too sparse (or structure requires too
many added zeros), BCSR can hurt performance

35

Streamed Compressed
Sparse Row (S-CSR) format

• S-CSR format partitions the sparse matrix into blocks along rows with size of
bs. Zeros are added in to keep the number of elements the same in each row
of a block. The column indices for ZEROs in each row are set to the index of

the last non-zero element in the row. The first rows of all blocks are stored
first, then second, third … and bs-th rows.

• For the sample matrix in the following Figure, NNZ = 29. Using a block size
of bs = 4, it generates four equal length streams R, G, B and P. This new
design only adds 7 zeros every 4 rows.

36

Streamed Blocked Compressed Sparse
Row (S-BCSR) format

• When the matrix is locally dense and can be blocked efficiently with a few
ZEROs added in, we can restore the blocked matrix using the similar idea as
S-CSR format. The first rows of all blocks are stored first, then second, third

… and last rows. Using 4x4 block for example, it will generate R, G, B and P
four equal length streams. We call this the Streamed Blocked Compressed
Row storage format (S-BCSR).

37

Performance Ratio Compared to
CSR Format

• S-CSR format is better than CSR format for all (on Power 5 and 6) or Most (on Power 4)
matrices

• S-BCSR format is better than BCSR format for all (on Power 6) or Most (on Power 4 and
5) matrices

• Blocked format performance from to 3x CSR.

38

What Does This Mean For
You?

• It is time to rethink data structures and
algorithms to match the realities of memory
architecture

We have results for x86 where the benefit is smaller
but still significant

Better match of algorithms to prefetch hardware is
necessary to overcome memory performance
barriers

• Similar issues come up with heterogeneous

processing elements (someone needs to
design for memory motion and concurrent and
nonblocking data motion)

39

 Performance on a Node

• Nodes are SMPs
You have this problem on anything
(even laptops)

• Tuning issues include the usual
Getting good performance out of the
compiler (often means adapting to
the memory hierarchy)

• New (SMP) issues include
Sharing the SMP with other processes

Sharing the memory system

40

New (?) Wrinkle – Avoiding Jitter

• Jitter here means the variation in
time measured when running
identical computations

Caused by other computations, e.g., an
OS interrupt to handle a network event
or runtime library servicing a
communication or I/O request

• This problem is in some ways less
serious on HPC platform, as the OS
and runtime services are tuned to
minimize impact

However, cannot be eliminated entirely

41

Sharing an SMP

• Having many cores available
makes everyone think that
they can use them to solve
other problems (“no one
would use all of them all of
the time”)

• However, compute-bound
scientific calculations are
often written as if all compute
resources are owned by the
application

• Such static scheduling leads
to performance loss

• Pure dynamic scheduling adds
overhead, but is better

• Careful mixed strategies are
even better

• Thanks to Vivek Kale

42

Expressing Parallelism

• Programming Model Libraries
OpenMP; threads
MPI (MPI-1, MPI-2, MPI-3)

(Open)SHMEM, GA

• Parallel Programming Languages
UPC, CAF in Fortran 2008

HPCS (Chapel, X10, Fortress)

• Hybrid Models
MPI + Threads

• Libraries/Frameworks
Math libraries

I/O libraries
Parallel programming frameworks (e.g., Charm++)

43

The PGAS Languages

• PGAS (Partitioned Global Address
Space) languages attempt to

combine the convenience of the
global view of data with awareness

of data locality, for performance

Co-Array Fortran (CAF), an extension
to Fortran 90

UPC (Unified Parallel C), an extension
to C

44

Co-Array Fortran (CAF)

• SPMD – Single program, multiple data

Replicated to a number of images

Images have indices 1,2, …

Number of images fixed during execution

Each image has its own set of local variables

Images execute asynchronously except when explicitly
synchronized

• Variables declared as co-arrays are accessible by
another image through a set of array subscripts,
delimited by [] and mapped to image indices by the
usual rule

• Multiple versions of CAF

Classic CAF

CAF in Fortran 2008

• Like Classic, but: No collectives; no teams.

45

UPC

• UPC is an extension of C (not C++) with
shared and local addresses

• Shared keyword in type declarations

• UPC defines parallelism in terms of
“threads” (may be implemented as OS
threads)

• Extensions include collectives and
nonblocking transfers

• Several implementations exist
including xlupc from IBM

46

Newer Languages

• HPCS Languages

Chapel, X10, Fortress

Retains locality (but in a general form)

Adds concurrency creation

More general distributed data structures

More general synchronization methods

• Research implementations – not ready

for applications

47

Hybrid Programming Models

• No one programming model is best for all parts of most

applications

• Combining programming models provides a powerful set of
tools

Can give very good results

But relies on a clean and efficient interface between
programming models – this is often missing

• On Blue Waters, MPI, UPC, CAF, and others will be
interoperable

Can build library routines/components in most appropriate
model

Link application together

Work still needs to be done to understand how best to
coordinate the models

• On BW, all models make use of a single lower level,
simplifying that coordination. However, threads and internode
support not unified

48

Getting Past MPI

• Incremental – various hybrid models

Single thread language (C/C++Fortran)

MPI – general Data structures; low level locality control

Thread/OpenMP – low-level shared memory; concurrency
creation

PGAS – support for distributed data structures; compiled
communication

• Revolution

Is it C/Fortran/C++ with extensions (e.g., next generation
PGAS)?

Must offer radical new capabilities

• Concurrency creation

• Latency hiding

• Data motion minimization

But without sacrificing generality

49

Scalability – A Matter of
Degree

• Concurrency
Need > 300k concurrent threads
Need > 10K more loosely coupled tasks
• Typical latencies: 1-10ns to Cache; 100-1000ns

to Memory; 1000-10000ns to remote memory

• Latency tolerance and communication
overlap

Systems are hundreds to thousands of clock
cycles across

• Load Balance
Any imbalance, from whatever cause, can
cause everyone to wait
Synchronous (barrier) algorithms likely to
scale poorly

50

Example of Load (Im)balance
and Scaling

• Simple regular grid
sweep

• Work per node should be
the same (each node is a
16-way SMP); weak
scaling

• All 16 cores used (typical
for real life)

• Local imbalances within
node create scalability
problem

• Note that load imbalance
will appear to slower MPI
communication

51

What’s Different at Petascale

• Performance Focus
Only a little – basically, the resource is expensive, so a
premium placed on making good use of resource
Quite a bit – node is more complex, has more features
that must be exploited

• Scalability
Solutions that work at 100-1000 way often inefficient at
100,000-way
Some algorithms scale well

• Explicit time marching in 3D

Some don’t
• Direct implicit methods

Some scale well for a while
• FFTs (communication volume in Alltoall)

Load balance, latency are critical issues

• Fault Tolerance becoming important
Now: reduce time spent in checkpoints

Soon: Lightweight recovery from transient errors

52

A Cluster Agenda

• Better use of existing resources

Performance-oriented programming

Dynamic management of resources at all levels

Embrace hybrid programming models (you have
already)

• Focus on results

Network bandwidth (and latency)

I/O capability

• Prepare for the future

Fault tolerance

Latency Tolerant Algorithms

Data-driven systems

